跨专业考研现在已经是常见的一种现象,毕竟研究生的专业基本定位了未来自己的发展方向,有的专业不接受跨专业考研的考生,不是因为专业歧视,而是由于该专业专业性很强,跨专业考生难以胜任以后的学习实验等,有一部分专业是可以接收跨专业考生的,但是须要有一定的基础,否则难以考上研,即使侥幸考上,在以后的学习生涯中也会是一场噩梦,这样跨专业考研就失去了实际的意义。
1.启航考研(大品牌)
2.新航道考研(老师专业负责)
3.高途考研(口碑不错)
4.高顿考研(覆盖区域广)
5.华图考研(整体评价好)
6.硕成考研
7.新东方考研
8.研途考研
9.云尚智慧
10.海文考研
以上仅供参考,不同的机构有各自的教学特色和优势。
启航的精神:道德的力量:“一个企业家身上应留着道德的血液”;拒绝暴利 反对狼性 德行天下;求真的态度:“生命不可能从谎言中开出灿烂的鲜花”;务实的信念--“最重要的教育方法总是鼓励学生去实际行动”;拒绝花哨 反对浮躁 知而行之,启航的价值观:我们得到的一切都来自学子。
考研数学应该怎么准备?现在已经是暑假阶段了,在这争分夺秒的时刻,想必考生们都有些疲惫和紧张吧,考研老师应邀给广大考生做一下考研数学重难点的总结梳理,并分享多年在考研数学辅导上总结的冲刺技巧,让大家复习更**,更轻松。
考研数学应该怎么准备?
一、时间规划
(1)10-月份开始**与综合题目演练,关键是**(10套左右),用时一个月左右;
(2)11-12 模拟+综合题目演练
只做**是不够的;11月开始模拟题的训练,数量不用太多,8套左右;如果还有时间,可以根据自己的复习特点,对短板进行复习;12月准备考试
二、重难点总结梳理
(一)高等数学
数学一、三考查:4选择+4填空+5大题=82 分
数二部分高数考察116分
(1)第一章 函数极限连续
求极限(八大方法)
求函数极限的方法有5种:洛必达法则,等价无穷小,利用导数定义,拉格朗日,泰勒公式
求数列极限的方法有3种: 夹逼准则,单调有界,利用定积分定义
(2)第二章 一元函数微分学
两个重点:导数应用(三大应用),微分中值定理(四大定理)
其中导数应用研究:两性(单调性+凹凸性),两点(极值最值点 +拐点);两线(渐近线+切线(法线))
(3)第三章 一元函数积分学
首先是积分计算(大题小题均可考)
传统方法计算:凑微分,换元法;分部积分法
技巧性方法:奇偶性,周期性,三角函数公式
然后是积分应用(三大应用)
分别为积分的几何应用,积分的物理应用,经济学应用(仅数三),数二需要尤其重视物理应用,变力做功和液体压力,经济学应用主要是边际函数和弹性函数的应用
(4)第四章 微分方程
数一,数三适合考小题,数二结合定积分或者多元微分学考大题,掌握一阶二阶微分方程的计算公式
(5)第五章 多元函数微分学
数二数三一定要加倍注意
主要题型有多元复合以及隐函数求偏导与偏积分,多元函数求极值
(6)第六章 二重积分
数二数三考大题,重点注意复习
主要题型:二重积分计算
(7)第七章 无穷级数
主要掌握敛散判定 (一般为小题,数三需尤其注意),幂级数求和(数一需要尤其注意)
(8)第八章 多元函数积分学(数一)
重点掌握:三重积分,曲线积分,曲面积分,后两者为重点,需掌握其计算方法公式
(二)线性代数
考查(2选择+1填空+2大题=34分)
(1)第一章 行列式
重点为行列式计算(数字行列式+抽象行列式) 一般考小题,掌握7条公式
(2)第二章 矩阵
重点为逆的证明与计算,秩的证明与计算,关于伴随矩阵
考生需掌握定义、性质、初等行变换
(3)第三章 向量
重点为线性表示判定与求法秩,初等行变换,相关无关判定(98考察证明大题),
掌握定义与秩
(4)第四章 线性方程组
重点为求基础解系与通解,有两类数字+抽象,关键词注意n-r个无关的解
(5)第五章 特征值与特征向量
重点有特征值特征向量的计算,需掌握定义、性质及特征方程法;相似判定也是重点,14年考过证明15年考过计算;实对称矩阵的计算,其中有三类题 :对角矩阵,可逆矩阵,正交矩阵的计算,反求矩阵A ,求A的高次幂
(6)第六章 二次型
常考题型:二次型化标准形(配方+正交变换),正交矩阵Q ,正定判定(99、05考过证明 )判定正定的形式有数字、抽象两种形式
(三)概率论与数理统计
考查(2选择+1填空+2大题=34分)
(1)第一章 事件与概率
重点为三大概型与三大公式,三大概型为古典概型排列组合,几何求面积结合定积分 ,Bernoulli*重复试验 三大公式为:条件概率,全概率,贝叶斯
(2)第二章 一维随机变量
重点为分布函数F(x)、概率分布P、概率密度 f(x);八大分布; 一维随机变量函数(公式法,分布函数法)
(3)第三章 二维随机变量
常考大题,考查方式:二维离散分布对应的联合、边缘、条件概率分布;二维连续分布对应的联合、边缘、条件概率密度
二维随机变量函数(四类)
注意*的话联合等于边缘乘积 !
(4)第四章 数字特征
重点掌握期望与方差计算(公式+性质+八大分布) ,协方差与相关系数计算(公式+性质)
期望公式
离散型:取值乘概率
连续型:大的(F)改成小的(f)乘概率密度再积分
(5)第六章 统计量
重点掌握三大抽样分布、四大统计量,考查定义、性质、分位点(结合几何图像掌握) 总结为三抽四统
(6)第七章 参数估计
常考大题,内容不多抓分容易
矩估计与最大似然估计(数一数三),评价标准(无偏+有效+一致)(数一)
期望、方差、依概率收敛(大数定律)14数一考过大题
版权所有 畅学无忧 © changxue51.com All Rights Reserved 豫ICP备2023000969号
该文章有用户自行上传发布,如有侵权内容请及时联系我们将第一时间删除。