欢迎来到畅学无忧教培平台!

位置:畅学无忧> 学校资讯> 辽宁考研保研培训机构> 沈阳大东区广受好评的考研半年集训营实力排名

沈阳大东区广受好评的考研半年集训营实力排名

机构:辽宁考研保研培训机构 时间:2025-08-09 12:37:50 点击:9

专业学位研究生学制两年到三年不等,主要侧重于实践应用研究,这是我国目前积极推行的一种研究生招生类型,因为培养出来的研究生主要从事专业实践工作,有利于推动经济社会发展,在以就业为导向的当下,专业学位研究生越来越受到广大学子的追捧了。

沈阳考研之窗

1、考研之窗

2、海文考研

3、高数帮

4、新东方考研

5、新文道考研

6、文都考研

7、高途考研

8、文都教育

9、中公考研

10、启航考研

以上不分先后,均来自网络。

沈阳考研之窗

考研数学复习之线性代数常考题型

考研数学复习之线性代数常考题型

线性代数内容比较少,但是各章节之间的关联性比较紧密,甚至是融会贯通的。在数一、数二、数三这三个卷种中所占比例是22%,在150分的总分中占有34分的分值。共有5题,2道选择题,1道填空题,2道解答题。

常考题型有:

1. 计算低阶和 阶数字型行列式。

2. 计算抽象型矩阵的行列式。

3. 克拉默法则的应用。

4. 代数余子式和余子式的概念,以及两者之间的联系。

5. 证明或判断矩阵的可逆性。

6. 求矩阵的逆矩阵。

7. 求解与伴随矩阵相关的问题。

8. 计算矩阵的 次幂。

9. 求矩阵的秩。

10. 求解矩阵方程。

11. 初等变换与初等矩阵的关系及其应用。

12. 分块矩阵的简单应用。

13. 判断向量组的线性相关性与线性无关性。

14. 判断一向量是否可以由另外一向量组线性表示。

15. 两向量组等价的判别方法及常用证法。

. 向量组的秩与极大线性无关组。

. 向量空间,过渡矩阵,向量在某组基下的坐标(数一)。

. 判定线性方程组解的情况。

. 由方程组的解反求方程组或其参数。

. 基础解系的概念。

21. 基础解系和特解的求法。

22. 求解含参数的线性方程组。

23. 求抽象线性方程组的通解。

24. 求两线性方程组的非零公共解,证明两齐次线性方程组有非零公共解。

25. 齐次线性方程组和非齐次线性方程组解的结构之间的关系。

26. 求两线性方程组的同解。

27. 求矩阵的特征值与特征向量。

28. 由矩阵的特征值或特征向量反求其矩阵。

29. 求相关联矩阵的特征值与特征向量。

30. 判别两同阶矩阵是否相似,判别某方阵是否可以相似对角化。

31. 相似矩阵性质的应用。

32. 矩阵可对角化的应用。

33. 化二次型为标准形。

34. 判别或证明二次型(实对称矩阵)的正定性。

35. 合同矩阵的概念与性质。

36. 判别两实对称矩阵合同。

37. 讨论矩阵等价、相似和合同的关系。

更多考研数学复习指导,请点击>>

沈阳考研之窗

考研之窗是一家以高端考研集训班起步的研究生入学考前培训机构,经过多年发展为多所知名高校输送大量优秀学员.考研之窗公共课阶段化定制培训,专业课快速提分的教学模式,让所有学员上更好的学校。在学生口中更享有“考研之窗,让考研变得更简单”的美誉。

考研之窗总部位于北京市海淀区,在北京、上海、武汉、 天津、郑州、广州、济南、沈阳、长春、大连有多所直 属校区,全国有36所加盟分校。是目前沈阳市平均师资水平最高的考研培训机构。与沈阳理工大学、沈阳化工大学、沈阳工学院有官方合作合同,80%教学点在校内。

考研之窗三率一绩的教务管理体系,你学不好教务老师挣得就少。教务管理细致严格,教务答疑专业个性化。全国连锁考研培训机构,沈阳10所分校。一对一个性化服务:学管、考研规划师一对一个性化管理规划,潘多拉以上班型有大量1对1课程。专注考研培训,沈阳市上岸率最高考研培训机构。

版权所有 畅学无忧 © changxue51.com All Rights Reserved 豫ICP备2023000969号

该文章有用户自行上传发布,如有侵权内容请及时联系我们将第一时间删除。